
An Exposition on the Universal Law of Robustness

A central tenet of machine learning is the careful balancing of the bias–variance trade–off1, yet
this tenet is at odds with the methods used in standard machine learning practices. The trade–off
implies that a model should balance under–fitting and over–fitting, but neural–networks are trained
to exactly fit (i.e, interpolate) training data. Classically, models that interpolate should over–fit
and not generalize well, but this does not arise in practice as they often obtain high accuracy on
test data. Recently, a new unified performance curve, dubbed the “double–descent” curve, was
discovered that reconciled classical understanding and modern practices. The curve extends the
U–shaped bias–variance trade–off curve by showing how increasing model capacity beyond the
point of interpolation results in improved performance.

More formally, in machine learning, given training data (xi, yi)
n
i=1, we want to find a function

(predictor) h ∈ H that minimizes the empirical training risk, 1
n

∑
ℓ(h(xi) − yi), where ℓ is the

loss function.2 We also want h to perform well with new (test) data. This is where the challenge
lies, balancing the seemingly orthogonal goals of minimizing the empirical risk and minimizing the
test risk. Classical wisdom dictates controlling the capacity of the function class H based on the
bias–variance trade–off by balancing under–fitting and over–fitting ([1]).

• H too small =⇒ all predictors in H may under–fit the training data and not generalize well
to test data.

• H too large =⇒ the empirical risk minimizer may over–fit spurious patterns in the training
data and thus not generalize well to test data.

That is, classical thinking is concerned with finding the “sweet spot”, but machine learning prac-
titioners do not care to find this balance. This disparity is what led to the discovery of the
double–descent curve:
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Figure 1: ([1]) Training risk (dashed line) and test risk (solid line). The double descent
risk curve, which incorporates the U–shaped risk curve (i.e., the “classical” regime) together with
the observed behavior from using high capacity function classes (i.e., the “modern” interpolating
regime), separated by the interpolation threshold.

1The appendix has a description of this.
2In literature, {yi}ni=1 are called labels.
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Previously, there had been no firm mathematical foundation for why this disparity exists, but in
2021, Sellke et al proposed a necessary condition for fitting that leads to this phenomenon. They
proved that constructing a smooth function that fits d–dimensional data requires nd parameters.
That is, overparametrization by a factor of d is a necessary condition for smooth interpolation.3

This discovery, further pointed towards the necessity of large model sizes in deep learning and will
be the main focus of this exposition ([2]).

This paper is divided into three main parts:

1. (Universal Law of Robustness) : We will give an intuitive rendition of the main ideas of
the paper, introducing new definitions/concepts required for complete understanding.

2. (Open Questions): Is it possible to consider other non-euclidean norms? Is having a small
global Lipschitz constant the right way to think about robustness?

3. (Recent Advances): We will give a short description of a recent modification of the Uni-
versal Law of Robustness and its application to finding matching subnetworks ([3]).

For the rest of this paper we make extensive use of footnotes to provide additional context and
details without interrupting the flow of the main text. While not essential, these footnotes offer
valuable insights and clarifications that enhance overall understanding. Therefore, we strongly
encourage reading them.

1 The Universal Law of Robustness

1.1 Building Intuition

Firstly, we define memorization:

Given data points (xi, yi)
n
i=1, is there a function h ∈ H s.t.

1

n

n∑
i=1

ℓ(h(xi)− yi) < ϵ (1)

Said differently, given a family of functions H, for which data sets can we fit the data?4

We often denote H, with a superscript p representing the number of parameters required in order to
express a function in the family. Consequently, we can view Hp as a family of families of functions.
In the case of neural networks (NN), p can represent the depth or width of a network. A natural
question is then: how large should p be so that there exists Lipschitz h ∈ Hp such that (1) holds?5

We can assume the function class Hp6consist of only families of Lipschitz continuous functions and
then ask: are there “nice” families of Lipschitz functions such that we can always fit the data with
one of them? The aim will be to establish that for family of Lipschitz functions its hard to fit the
data with only n “degrees of freedom.”7

3The Universal Law of Robustness does not talk about generalization, but the trade–off between size and smooth-
ness on low training error. It posits, that scale enables entirely new behavior. As a remark, not all measures of
smoothness admit a trade–off (e.g., Sobolov like norms).

4For simplicity, from henceforth, we assume a squared loss function.
5Our definition of robustness is an h that has a uniformly bounded Lipschitz constant. This is important, the

Universal Law of Robustness requires the Lipschitz constant to be bounded everywhere.
6We proceed to drop the superscript in future references to the function class.
7Its “natural” to expect that if p > Ω(n) then we can fit the data, but if p is only as big as n you may not be able

to memorize with a Lipschitz function.
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1.1.1 Digression: What does a good Lipschitz constant have to do with robustness?

Definition 1. Let (X, dX) and (Y, dY ) be metric spaces. A function h : X → Y is called L–
Lipschitz if there exists a L ∈ R such that that,

dY (h(x), h(y)) ≤ LdX(x, y) ∀x, y ∈ X.

In this exposition, we use euclidean norm as our distance metric. A Lipschitz constant tracks
smoothness since it is a measure of how much the output of a function can change relative to a
change in its input. This has a close tie to robustness. Take the figure below:

With a small amount of carefully crafted noise to the image, the network can be tricked into think-
ing that the image of a panda is of a gibbon. That is, the network’s output function h gives the
result h(x)=“panda” for the original image x, but h(x+ ϵx̂)=“gibbon” for the slightly noisy image
x+ ϵx̂. This indicates that the output of the function h changes drastically near the input x. One
way to prevent such sensitivity to small perturbations is to require that the function h has a small
Lipschitz constant. By limiting the Lipschitz constant, we ensure that the function h is smooth and
cannot exhibit large fluctuations near any input point, thus making the neural network more robust.

1.1.2 Back to the Main Argument

As previously stated, we hope to establish that for families of Lipschitz functions it is “hard” to
fit the data using only n degrees of freedom. Before presenting the main theorem, let us give an
example, where we can easily solve for p.

• 2–Layer NN: Fix k ∈ N, (activation function) σ : R → R, h : Rd → R. Let us consider
functions of the form,

h(x) =

k∑
i=1

αiσ(x · wi + bi)

Here, each component of the sum is a neuron (so we have k neurons), and αi, bi ∈ R. Then
p = k(d + 2). Each component requires d + 2 (d from wi and one for each αi, bi) and there
are k of them.

Now, let us give two extreme examples to illustrate the connection between the parameter count p
and the Lipschitz constant.

• p ≈ n = d: Suppose xi ∼ U(Sd−1) and yi ∼ U({±1}) independent from xi. Then the
Lipschitz constant is Ω(

√
d)

Proof. Take the figure below and assume the left vertical line represents the subspace of all
xi’s s.t. yi = 1, while the right vertical line represents the subspace of all xi’s s.t. yi = −1
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1√
d

Since ||xi|| = 1 and there are d of them, the center of mass of the xi’s have norm 1√
d
:

Proof.

⟨1
d

d∑
i=1

xi,
1

d

d∑
i=1

xi⟩ =
1

d2
⟨

d∑
i=1

xi,

d∑
i=1

xi⟩

=
1

d2

d∑
i=1

d∑
j=1

⟨xi, xj⟩

1
=

1

d2
· d =

1

d

1
d∑

i=1

d∑
j=1

⟨xi, xj⟩ = d because if i = j then we have 1, otherwise 0 because the correlations are

0. This is because over the entire sphere for every xi there exists an equally likely xj pointing
in the opposite direction making the average contribution to the pairwise inner product 0 as
the number of vectors increases.

Now, 1
d was the norm squared, hence we have 1√

d

This tells us the mass is contained within a 1√
d
width. Now, we must find a constant L s.t,

|h(xi)− h(xj)| ≤ L|xi − xj |, but this is simply

|1− (−1)| ≤ L · 1√
d

2 ≤ L · 1√
d

2
√
d ≤ L

Hence L = Ω(
√
d)

As a remark,
√
d is a bad Lipschitz constant as it is highly sensitive. If one moves by distance

1√
d
, then the function value changes by 1. In literature, what is presented above is called the

Baum construction and one can show it is actually Ω(d) Lipschitz.8

8Intuitively, if you move each of the d neurons (dimensions) a distance of 1√
d
, then in total you’ve moved only

distance one (
√

d( 1√
d
2 ) but you’ve activated d neurons so the function value is d.
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• p = nd: Under the same assumptions, xi ∼ U(Sd−1) and yi ∼ U({±1}) independent from xi,
we have a Lipschitz constant of O(1).

Proof. The intuition here is that in high dimensions, the points will be well isolated with
high probability. That is, if one draws a ball of radius 1

ri
around a point xi, this ball will be

empty. Consequently, interpolating these data points smoothly requires superposing ri−Lip
bump functions9 around each data point. Hence, with n(d+ 1) parameters (d for the center
and 1 for the height for each bump function) one can get perfect fit with a O(1) Lipschitz
constant.

In 2020, it was conjectured one needs Lip(h) ≥ Ω(
√

nd
p ) for memorization in 2-layer NN ([4]). That

is, there exists an interpolation between the two aforementioned cases.10

1.2 Framing the Theorem

Definition 2. A measure µ on Rd is c–concentrated if for all φ 1–Lip,

µ({|φ(x)− Eµφ| > t}) ≤ 2e−
t2

c2

In particular, c is the going to be the variance of 1–Lip functions, all while retaining a subgaussian
tail. An important example, µ = U(Sd−1) is 1√

d
–concentrated.

Definition 3. H = {hω : ω ∈ Ω ⊆ Rp} is a J–Lip representation if for all x ∈ B,

|hω1(x)− hω2(x)| ≤ J |ω1 − ω2|

Here, B represents a bounded set.

Theorem 1 ([2]). Let (xi, yi)
n
i=1 iid sampled from some measure D on Rd× [−1, 1] s.t. the marginal

of the measure on the x coordinate, i.e., Dx is c–concentrated. Moreover,

• Let H admit a J–Lip representation with p degrees of freedom.

• Assume for all x, V ar[yi|Xi = X] ≥ σ2

11Then, w.h.p for every h ∈ H s.t. 1
n

∑
(h(xi)− yi)

2 < σ2 − ϵ =⇒ Lip(h) ≥ Ω̃( ϵσ

√
nd
p )

A few remarks on the theorem:

1. In real world data, labels (the y’s) are not always noisy, but, mathematically, we have to
assume labels are not deterministic otherwise one would be able to fit anything, and there
would be no need to learn. Consequently, this “theory noise level” we inject is meant to
capture the difficult part of learning. Proving a universal law of robustness on noiseless data
is an open problem.

9A bump function is a technical term for a function that goes smoothly to 0 in finite space and is C∞.
10This BLN conjecture is still open, as the Universal of Law of Robustness paper proves a special case of it, when

one has polynomially bounded weights. However, the polynomial weight assumption is necessary when considering
neural networks with ≥ 2 hidden layers. Consequently, the BLN conjecture, is of more mathematical interest than
practical one.

11To further tie this theorem back to our original musings about how large p has to be: this tells us if p is very
low, you would need a higher Lipschitz constant, which is less smooth and thus not as robust. Consequently, if you
want to find an h that fits the data well and has a good notion of robustness you need a higher p. That is, any h
with training error below the noise level σ2 has smoothness 1/Lip(h) increasing with the number of parameters, p.
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2. The theorem, and this will be made more clear in the proof, makes a very strong assumption
that xi are distributed from something that is highly concentrated, such as U(Sd−1) and
bounded. What happens if xi ∼ N (0, 1)?

Before proceeding to the proof of Theorem 1, let us first build intuition as to why it might be true
with a toy problem: Assume xi’s and yi’s are independent. Now, suppose yi is pure noise, that is,
yi ∼ Ber(12) on ±1. Take A = {| 1n

∑
i
yi| < 0.1}, then P(A) ≥ 1− 2e−Ω(n) by Hoeffdings inequality.

Now, under A, fix a 1–Lip h ∈ H. We can pose the question: what is the probability h exactly fits
our data?12

Proof. We know Dx is c√
d
–concentrated and h is 1–Lip. Now, h is 1√

d
concentrated so h cannot be

close to both −1 and 1 on large sets (since most points of h are close to the expectation). Either
the set where h is close to −1 is small or the set where h is close to 1 is small. That is, it is one of

Dx({h(x) ≥ 1− ϵ}) ≤ e−Ω(d) (2)

Dx({h(x) ≤ −1 + ϵ}) ≤ e−Ω(d) (3)

Now, conditioning on A (so about half of the points are −1 and the other 1), then for all h the
probability that all the points fall under the proper label, that is, P(h fits the data) ≤ e−nd.13

Consequently, taking a union bound over function class H of size N of 1–Lip functions, tells us
that the probability there exists an h ∈ H fitting the data is at most: Ne−nd = elog(N)−nd. Hence,
under a discretized argument, “for a smoothly parametrized family with p (bounded) parameters,
one expects log(N) = Õ(p) ([2]).”

1.3 The Proof

Before proceeding to the proof, we introduce a few definitions and lemmas:

Definition 4. The log moment generation function φ of a random variable X is

φ(λ) := log E[eλ(X−E(X)]

Definition 5. A r.v. X is σ–subgaussian if its log moment generation function φ(λ) ≤ λ2σ2

2

Lemma 1. If X is σ–subgaussian then P(|X − µ| ≥ t) ≤ 2e−t2/2σ2

Lemma 2. if {Wi}ni=1 iid c–subgaussian then 1
n

∑
Wi is

c√
n
–subgaussian.

Proof. WLOG, let E[W1] = 0 , then

E[eλ/n(W1+W2+···+Wn)] = E[eλ/nWi ] · · ·E[eλ/nWn ]

≤ e(
λ2

n2 c
2)/2 · · · e(

λ2

n2 c
2)/2

= e(λ
2 c2

n
)/2

Consequently, 1
n

∑
Wi is

c√
n
–subgaussian

12We condition under A to do away with the possibility of yi’s not being well-balanced. As a remark, the probability
of this unlikely event is not amplified by a union bound over h ∈ H.

13More precisely, it is e
−nd

Lip(h)2 if we take Dx to be c√
d
–isoperimetry because then h can be any bounded L–

Lipschitz function.
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Now, we proceed with the proof of Theorem 1:

Proof. Let yi = g(xi)+zi, such that E[zi|xi] = 0. Here g(xi) is the signal and is deterministic while
zi is pure noise. Recall, V ar(zi) ≥ σ2. Consider the following two events14:

A := { 1
n

∑
z2i ≥ σ2 − ϵ

10
} (4)

B := { 1
n

∑
zig(xi) ≥ − ϵ

10
} (5)

Then, by Hoeffdings, P(A ∩B) ≥ 1− eΩ(nϵ2). Now, for all h ∈ H, define

Ch := { 1
n

∑
h(xi)zi ≤

ϵ

10
} (6)

We claim, if event A ∩B ∩ Ch occurs then it must be the case that we are not too correlated, i.e.,
1
n

∑
(h(xi)− yi)

2 ≥ σ2 − ϵ.

Proof. Let G = 1√
n
(g(x1), ..., g(xn)), Z = 1√

n
(z1, ..., zn), and H = 1√

n
(h(x1), ..., h(xn)). Then, we

want to lower bound ||H −G− Z||2. Notice under A ∩B ∩ Ch,

||H −G− Z||2 = |Z|2 + 2⟨Z,G⟩ − 2⟨Z,H⟩+ |H −G|2 ≥ σ2 − ϵ

If we can establish that for all 1–Lip h, P(Ch) ≥ 1−e−Ω(nd) then Theorem 1 follows. This is because,
under event A∩B ∩Ch we are not too correlated and thus cannot approximate. Consequently, we
will be able to establish w.h.p., there does not exists a 1–Lip h that approximates (fits) our data
well, i.e., where 1

n

∑
(h(xi)− yi)

2 < σ2 − ϵ.

Proof. Let ri = zi(h(xi) − EDx [h]) and consider 1
n

∑
ri. We know xi are distributed in a measure

that is 1√
d
concentrated, that is, the probability of xi being far from the mean decreases exponen-

tially with the distance, scaled by 1/
√
d. Now, since h is 1–Lip the deviation of h(xi) from its mean

is bounded by the deviation of xi from its mean. So, the probability of |h(xi)−E[h]| being large also
decreases exponentially, scaled by 1/

√
d. Consequently, h(xi) − EDx [h] is

1√
d
–subgaussian. Since

the zi ∈ [−1, 1], ri is also
1√
d
–subgaussian.

By Lemma 2, 1
n

∑
ri is

1√
nd
–subgaussian. By Lemma 1, this tells us that the probability 1

n

∑
ri is

at least ϵ is ≈ e−ϵ2nd. Moreover, |
∑

ziE[h]| ≤ |
∑

zi|. Therefore, if we have15:

D := {| 1
n

∑
ziE[h]| <

ϵ

10
} (7)

then P(D) ≥ 1− 2e−Ω(nϵ2) by Hoeffdings.16 Consequently, P(Ch) ≥ 1− e−Ω(nd) under D.17

14Notice, neither depends on h.
15The E[h] is bounded because we can always round it to ±1 since yi ∈ [−1, 1].
16Notice, this bound is independent of h.
17Or, P(Cc

h −D) ≤ e−Ω(nd).
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1.4 Closing Remarks

We are not quite done. We have shown, one cannot finding a 1–Lip function h to fit the data.
In fact, this is true for any L–lip function, if we use the concept of c–isoperimetry, rather than
c–concentrated,

Definition 6. A probability measure µ on Rd satisfies c-isoperimetry if for any bounded L–Lipschitz
φ,

µ({|φ(x)− Eµφ| > t}) ≤ 2e−
dt2

2cL2

Now, this does not directly imply any h in our class that fits the training data well below the noise

level must also have Lip(h) ≥ Ω̃( ϵσ

√
nd
p ).

In the paper, a proof of Theorem 3 is provided using the ϵ–net technique (to deal with an infinite
H), then is applied to deep neural nets to get our desired Lipschitz constant bound. Proving
Theorem 3 requires a lot of runway; the paper has many previous theorems/lemma leading up to
it and is not particularly enlightening. The heart of the paper, which is essentially shown above, is
proving under certain conditions, there is no L–lip h that approximates data well.

2 Open Questions 18

2.0.1 Norms

As mentioned in a previous footnote, not all measures of smoothness admit a trade–off; examples
include natural alternatives such as the Sobolov norms or Barron norms on two layer networks
([5]). That is, for those measures of smoothness, it is possible to build networks with as few
parameters as information-theoretically possible while also being as smooth as possible (with respect
to that norm). Let’s expand on why we cannot find a universal law of robustness (in the ways it’s
constructed in the paper) using Sobolov norms:

• The Universal Law of Robustness requires the Lipschitz constant to be bounded everywhere.
We can view the Lipschitz constant as an upper bound on the magnitude of the gradient, so
this boundedness constraint is akin to needing a small gradient everywhere. Consequently, If
we require the ℓ2 norm of the gradient to be small, it means that the gradient will be small
at every point. This is in contrast to Sobolov norms that only lets us express that a function
has a small gradient almost everywhere.19

The paper focuses on Euclidean norm, specifically ℓ2, but the proof does not depend on this norm.
Everything follows as long as one assumes isoperimetry in the norm of interests. Now, finding a
norm in which a trade–off exists and finding an interesting case in which isoperimetry provably
holds for that norm is no easy task.20 An interesting open problem is to check if a universal law of
robustness holds for something like the wasserstein norm or ℓ∞. The latter norm is of particular
interest as that is more commonly used in adversarial robustness literature.

18My initial plan was to poke at the role of depth in the Universal Law of Robustness. That is, given depth D

neural networks, showing why finding a theoretic construction that shows that Lip(h) ≥ Ω̃

(√
nd
Dp

)
is tight (at some

large depth D) is a non-trivial task. Unfortunately, to do this well would require introducing too many new ideas,
and would make this exposition long.

19Sobolov norm like Eµ|∇h(x)|2.
20In what cases is it reasonable to think of this isoperimetry property defined in terms of concentrations of Lipschitz

functions as realistic?
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2.0.2 Robustness

The paper, [2], connects a low number of parameters, p, to a higher Lipschitz constant bound, and
then connects that to low robustness (or high adversarial generalization error).21 However, this
latter connection is tenuous especially since we are looking at a global Lipschitz constant.

From a theoretical perspective, it may not be the case that this global constant is fundamentally
related to the adversarial generalization error. That relationship may depend on more fine–grained
quantities such as the distribution of the Lipschitz constant over the data domain. Studying more
fine–grained properties is an open problem, but requires finding other norms if we still want some
form of a universal law.

From a practical perspective, there are two points of contention,

• One of the most effective adversarially robust algorithms is randomized smoothing, which
does not rely on a Lipschitz continuity assumption ([6]).

• Provably safe defenses aim to provide formal guarantees about a model’s robustness to ad-
versarial perturbations within a certain ϵ–ball around an input and rely on the concept of
Lipschitz continuity to establish bounds on the model’s output variation. However, instead
of using a global Lipschitz constant, which may be overly conservative and limit the model’s
expressiveness, many verifiers use the local Lipschitz constant.22 Even if a model has a high
global Lipschitz constant, it can still have a low local Lipschitz constant in regions close to the
actual data points. This means that the model can be relatively smooth and stable around the
data manifold. State–of–the–art robust models recognize this distinction and often explicitly
optimize for local Lipschitz constants rather than global smoothness ([7]).

In general, connecting the papers findings more precisely to robust test error is a big open problem.

3 Recent Advances

There have been a couple papers pushing/expanding the theoretical foundations of this universal
law of robustness ([7], [3]). In this section, we give a short description of [3], and the way in which
they connect the Universal Law of Robustness to pruning.

3.1 Background

There has been increasing interest in neural network pruning as a means to reduce the cost and
size of training while maintaining performance. Pruning is done by masking away a certain fraction
of the weights (setting them to zero), so they can be ignored during training or inference which
reduces the number of operations and thus the cost required to achieve good performance. One
can prune at any moment during the life-cycle (at initialization, during training or after training).

It was empirically shown that there exist “lottery tickets”: sparse subnetworks that can be trained
to the accuracy of the full dense model at or near initialization ([8]).23 Moreover, there exists algo-

21Adversarial generalization error measures how well the model performs on a test set that has been adversarially
perturbed. Consequently, with low robustness comes high adversarial generalization error.

22This allows for a more precise characterization of the model’s behavior around specific data points.
23[8] sought to answer the question: If we can prune models after training, can we train smaller models? The study

of finding these smaller models that can be trained to the accuracy of the full model is called matching subnetworks.
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rithms to find these matching subnetworks called iterative magnitude pruning (IMP) with weight
rewinding. While interesting in principle, the IMP technique necessitates training the entire model
on the dataset multiple times to discover these “lottery tickets.” This approach contradicts the
primary objective of finding highly sparse yet trainable subnetworks.

With this contention, a recent line of of research has emerged, charged with finding these “lottery
tickets” fast (i.e., without training the full model). While there remains large efforts to develop
algorithms to prune at initialization, most of them remain unsuccessful at finding lottery tickets in
general settings without training.

If a technique for finding matching subnetwork of a task were available, one could prune the net-
work at the outset and then efficiently train the resulting sparse subnetwork to achieve comparable
performance on the task, potentially rendering the training of large, dense models unnecessary.
Finding an algorithm capable of this is unlikely as it would contradict the large theoretical liter-
ature that espouses the necessity of overparametrization ([1],[2]). Consequently, any theory that
intends to align with past literature on the benefits of overparametrization and also formalize the
intractability of pruning at initialization must explain why lottery tickets can exist, but not be
found efficiently (without training the full network on the data). This paper seeks to accomplish
exactly that.

3.2 Contributions

They present a modified version of the Universal Law or Robustness that replaces parameter count,
p, with an effective parameter count, peff,

Theorem 2 ([3]). Assume the same conditions as in Theorem 3 and that H has the additional
structure of masks, so that each hypothesis h ∈ H has parameters (m,w) satisfying mi = 0 =⇒
wi = 0 for all i ∈ [p]. Then, with high probability over sampling of the data, one has for any
learning algorithm W taking in data D and outputting function hW ∈ H:

1

n

n∑
i=1

(hW (xi)− yi)
2 ≤ σ2 − ϵ =⇒ Lip(h) ≥ Ω̃

ϵ

√
nd

peff

 ,

where peff = Θ̃
(
I(mW ;D) + E[∥m∥1]

)
.

This new parameter couples the number of parameters with the mutual information of the sparsity
mask with the dataset.24 More specifically, it includes the number of unmasked parameters E[∥m∥1]
as well as the mutual information between the sparsity pattern mW and the data.25 This coupling
reveals a new way in which information and parameters can be traded off.26

With this new re–framing they show that subnetworks derived from pruning algorithms that train
on the data, such as lottery tickets, are not really sparse in peff, whereas those derived from
pruning at initialization are. Essentially, a learning algorithm pruning at initialization with little

24peff cannot be larger than p up to logarithmic factors incurred from discretization.
25The latter term reflects the notion that a sparsity mask learned from data should be interpreted as a set of binary

parameters, thus contributing to the network’s total parameter count.
26Similar to [2], they show that for a learned function to fit below the noise level, it must correlate with the noise

in the data, but they go beyond this by showing this correlation must be large, and thus the mutual information
must be large with high probability.
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dependence on data will result in a subnetwork that has low peff and thus poor robustness, since it
is truly sparse. On the other hand, pruning algorithms that iteratively use properties of the data
to find a mask may not be truly sparse in peff; they trade off the unmasked parameter count of
the network for mutual information, so that the subnetwork produced has peff much larger than a
truly sparse network. The paper conjectures this disparity is exactly why lottery tickets exists, but
cannot be found fast.

4 Closing Remarks

The Universal Law of Robustness fully contextualizes the trade–off between size and smoothness
on low training error. It tells us, any h ∈ H with training error below the noise level σ2 has
smoothness 1/Lip(h) increasing with the number of parameters, p. Moreover, this was under a
broad parametrized function class, H, so this law holds for practical function classes (e.g., resnet
or transformers). The work remains groundbreaking despite the many open problems, including
but not limited to:

• Can we construct a universal law of robustness for noiseless data?

• Can we find a universal law of robustness under different norms (e.g., ℓ∞)?

• Can we better connect the Universal Law of Robustness to robust test error?

Furthermore, using the Universal Law of Robustness as a foundation, a new paper emerged giving
a solution the question of why “lottery tickets” exist but cannot be found efficiently ([3]); another
groundbreaking result, that may have otherwise never been found. We are excited to see how this
new line of research continues evolving.
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Appendices

A Bias–Variance Trade–off

Assume there is an value θ we seek to estimate. Then,

Bias(θ̂, θ) = E[θ̂]− θ

Here, the expectation is with respect to the underlying distribution that θ̂ is from. If Bias(θ̂, θ) = 0,
it is called unbiased. Now variance is,

Var(θ̂) = E[θ − E[θ̂]]2

The goal is to have an estimator with low bias and variance. The image below is helpful,

If our model is simple with few parameters then it may have high bias and low variance (i.e., under–
fits but generalizes well). On the other hand, having too large of a number of parameters can lead
to high variance and low bias (over–fits but struggles to generalize). The goal then becomes to find
a balance.

More specifically: let’s say we have data set S = (xi, yi)
n
i=1 where each sample (xi, yi) is drawn iid

from some underlying distribution D. We want to use S to learn a function hS : X → Y (here
Y ⊂ R). We want to know the expected prediction error of this learning algorithm. That is, we
want to know Ex,y,S [(y − hS(x))

2].

Let ȳ = h̄(x) = ES [hS(x)]. Then for a fixed x,

Ey,S [(y − hS(x))
2] = Ey,S [(y − ȳ + ȳ − hS(x))

2]

= Ey[(y − ȳ)2] + ES [(ȳ − hS(x))
2] + 2Ey,S [(y − ȳ)(ȳ − hS(x))]

= Ey[(y − ȳ)2] + ES [(ȳ − hS(x))
2]

= Ey[(y − ȳ)2] + ES [(h̄(x)− hS(x))
2 + (ȳ − h̄S(x))

2]

Consequently, for fixed x

Ey,S [(y − hS(x))
2] = Vary|x(y) + VarS(hS(x)) + bias(hS(x))

2
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=⇒
Ex,y,S [(y − hS(x))

2] = Ex[Vary|x(y) + VarS(hS(x)) + bias(hS(x))
2]

This is the bias–variance trade–off (a trade-off between accuracy and complexity): we want to
choose the right model which requires balancing between reducing the second and third terms in
order to get the lowest mean squared error.

B Main Theorem From [2]

Theorem 3. [2] Let H be a class of functions from Rd → R and let (xi, yi)i∈[n] be i.i.d. input-output

pairs in Rd × [−1, 1]. Fix ϵ, δ ∈ (0, 1). Assume that:

1. The function class can be written as H = {hw,w ∈ W} with W ⊂ Rp, diam(W) ≤ W and
for any w1,w2 ∈ W,

||hw1 − hw2 ||∞ ≤ J ||w1 −w2||.

2. The distribution µ of the covariates xi can be written as µ =
∑k

ℓ=1 αℓµℓ, where each µℓ

satisfies c-isoperimetry, αℓ ≥ 0,
∑k

ℓ=1 αℓ = 1, and k is such that

104k log(8k/δ) ≤ nϵ2. (8)

3. The expected conditional variance of the output is strictly positive, denoted σ2 ≡ Eµ[V ar[y|x]] >
0.

4. The dimension d is large compared to ϵ:

d ≥ C1

(
cL2σ2

ϵ2

)
. (9)

Then, with probability at least 1−δ with respect to the sampling of the data, one has simultaneously
for all h ∈ H:

1

n

n∑
i=1

(h(xi)− yi)
2 ≤ σ2 − ϵ ⇒ Lip(h) ≥ ϵ

σ
√
C2c

×

√
nd

p log(1 + 60WJϵ−1) + log(4/δ)
. (10)

Moreover if W consists only of s-sparse vectors with ||w||0 ≤ s, then the above inequality improves
to

1

n

n∑
i=1

(h(xi)− yi)
2 ≤ σ2 − ϵ ⇒ Lip(h) ≥ ϵ

σ
√
C2c

√
nd

s log
(
p(1 + 60WJϵ−1)

)
+ log(4/δ)

. (11)
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